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The renormalization group method proposed by 't Hooft is developed for 
the study of scaling properties of some models of nonequilibrium 
phenomena. For one of two models studied in detail, the Langevin equation 
for the random variables contains a bilinear streaming velocity and the 
stationary probability distribution is Gaussian. The time-dependent 
Ginzburg-Landau model is chosen as a second example because it illustrates 
the advantage of the 't Hooft method of not having to specify a particular 
renormalization point. The scaling exponents for a model of the liquid-gas 
phase transition are calculated in lowest order to illustrate application of 
the method to a multifield system. 
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1.  P R O L O G U E  

The study of  equilibrium and nonequilibrium critical phenomena has under- 
gone a revolution since the introduction of the renormalization group (RG) 
method devised by Wilson. ~l'm The success of  Wilson's method stems from 
its physically intuitive formulation and the possibility of  performing detailed 
calculations of  critical exponents and scaling functions. Similar methods have 
been employed to study scaling behavior of  turbulent flow ~a~ and the break- 
down of  hydrodynamics in an incompressible fluid, m In these problems it is 
found that perturbation expansions in the nonlinearities in the Hamiltonian, 
or free energy, become invalid for space dimensions less than some critical 
value do. When a renormalization of  the perturbation expansion can be 
accomplished, a R G  method enables the scaling behavior and asymptotic 
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form of the propagators to be established, and critical exponents may be 
calculated as expansions about the dimension de. 

Nonequilibrium phenomena have been studied by several groups of 
authors using different RG methods. The first results for models of critical 
phenomena were obtained by Halperin and Hohenberg and colleagues. The 
method they pioneered shares the attractive features of Wilson's RG method, 
and reviews of their extensive studies can be found in Refs. 5-7. Alternative 
methods developed by De Dominicis et  al. ~8~ and Bausch et  al.  ~9~ exploit 
field theoretic techniques. These latter methods are not as intuitive as Wilson's 
and Halperin and Hohenberg's, but they are none the less appearling because 
scaling can be demonstrated explicitly from a RG equation, and computa- 
tional techniques are well developed and economical. Our results agree with 
those obtained by these three groups of authors, whenever direct comparison 
is possible. 

The method of De Dominicis e t  al. is closest in spirit to the study dis- 
cussed here, which is based on work by 't Hooft. (1~ In comparing the present 
study with previous studies using field theoretic techniques, the main. points 
to bear in mind are that: (1) mode-coupling terms are conveniently included 
in the present work, which is formulated in terms of a nonlinear Langevin 
equation, whereas Lagrangian formulations appear to be best suited to 
relaxation models; (2) many benefits accrue from the use of dimensional 
regularization of nominally divergent Feynman integrals, not least of which 
is that (3) the RG equation is homogeneous and can be solved before taking 
the asymptotic limit. 

Castro and Jona-Lasinio m) discuss at length the question of the relation 
between the Wilson RG method and field theoretic methods for the case of 
equilibrium critical phenomena. Notwithstanding this discussion, a trans- 
parent one-to-one mapping between the two approaches for the general 
problem seems to be still lacking. 

Reading recent papers on the application of RG methods to problems in 
field theory, one frequently comes across references to the Callan-Symanzik 
equation, dimensional regularization (12) mass-independent RG methods, and 
minimal subtraction procedures. Further reading reveals that a recent spate 
of work which utilizes these devices and techniques stems from the new 
vistas that have been opened for the field theorist by the successful renormal- 
ization of massless Yang-Mills fields by 't Hooft. (la) The RG methods of 
't Hooft ~1~ and Weinberg ~4~ focus attention on the renormalization constants 
which are introduced to absorb the infinities in perturbation expansions, for 
they show that it is just these infinite parts that give the (anomalous) scaling 
properties of propagators. 

The aim of the present paper is to develop the 't Hooft RG method for 
problems in nonequilibrium statistical mechanics, while Amit c26~ has demon- 
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strated its advantages for static critical phenomena. The paper is therefore 
primarily about methodology. We motivate and illustrate methods by 
studying two models. Both models have been analyzed using alternative RG  
methods, and we therefore anticipate that most of our specific results have 
been reported in the literature. We also describe briefly a two-field model 
which has features that are common to the two single-field models that are 
discussed in detail. 

In an attempt to give some overall direction to the paper, which is 
unavoidably technical in places, we summarize the salient features of the 
renormalization procedure, RG equation, and scaling properties. 

For the models studied here a perturbation expansion of the response 

function, in terms of nonlinear couplings in the Langevin equation, contains 
divergences for space dimension d = de. The divergent terms are of the form 
In(k/ix), where k is an external wave vector and ix a cutoff. Evidently, features 
of physical interest can be extracted when we understand the behavior of the 
perturbation expansion as a function of ix, i.e., we should regard tz as a 
floating cutoff (eventually ix will be scaled to zero) and treat the various 
parameters of the model as functions of ix. However, the introduction of ix 
must not change the physics, and this requirement places important restric- 
tions on the theory, as we shall see. 

The divergences for d = dc in the perturbation expansion can be 
expressed as simple poles of Feynman integrals at e -- dc - d for d < dc by 
using a dimensional regularization procedure. (12) The prescription for 
renormalization is that these poles are absorbed into the bare parameters of  
the model. The possibility of  removing divergences in the perturbation 
expansion in this manner defines what.we mean by a renormalizable model 
and, specifically, we are not required to introduce counterterms which cannot 
be generated from the bare model in order to effect renormalization. For 
example, a nonlinear coupling strength parameter )to takes the form 

)t o = ix~[)t + ~ a,()t)E-"], n = 1, 2,... (1) 
n 

where the quantity ~ is chosen to make the renormalized coupling parameter 
)t dimensionless for all d, and the coefficients a,(A) are determined from the 
residues of the poles in the Feynman integrals by requiring that the re- 
normalized model is finite as e ~ 0 order by order in )t. An essential feature 
of the transformation ;~0 ~ 1(ix) represented by (1) is that the coefficients a~ 
are (polynomial) functions of ;~ only. This can be demonstrated by dimen- 
sional reasoning, and also several specific examples are given in the main 
text. The divergence of  the perturbation expansion manifests itself in the 
divergence of h(ix) as ix tends to zero. 

Physically relevant features of  a model are found when )t is independent 
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of the floating cutoff/~, and the value of h at which this occurs is called the 
fixed point A*. Consequently, we are led to study the zeros of 

/3 = t~(dA/dl~) (2) 

which is usually called the Gell-Mann-Low function. The derivative of A is 
taken with respect to In ~ because we want the properties of/3 to be indepen- 
dent of an arbitrary scaling of/~. 

A RG equation, expressing the connection between renormalizability 
and a scale transformation, can be derived by requiring that the response 
function is not changed by a rescaling of/~. We denote the inverse of the 
Laplace transform of the response function by F0, and a reduced frequency 
by 0. Since Fo expresses real, physical information on the dynamic properties 
of a model system, it is not changed when t* -+ r~, where r is an arbitrary 
scale factor, i.e., 

r0(k, 0(t,), A(~)) = to(k, O(rtO, A(r~)) (3) 

where k is the external momentum. 
In the simplest cases it proves possible to write (see, for example, 

Sections 4 and 5) 

I" o = ~ Z -  l@)A(k/l~, O(/z), h(~)) (4) 

with 

d l n Z  dln  0 
- -  = z ( 5 )  

dlnt* = d l n ~  

where z is usually called an anomalous dimension function, and ZI'o is finite 
as E ---> 0 order by order in A. The factor /~ gives the canonical dimension of 
Fo, and 

Z = 1 - ~  b.m 1mE-" (6) 
n r t l  

where n and m are positive integers. Combining (3), (4), and (5) we find 
immediately that 

A(rk/l~, 0(~), h~)) = ro{Z(t,)/Z(rl~)}A(k/ix, O(rtz), h(rtz)) (7) 

and 

{Z(~)/ Z(rI~)} = exp[ -  f )  z(~)t~- l dt~] 

The asymptotic behavior of the renormalized response function is evidently 
determined by the solutions of (2) and (5) in the limit r--> 0. The result (7) 
can also be obtained by solving the characteristic equation for A(k, O, A) in 
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which the coefficients of the derivative with respect to 0 and A are z and/3, 
respectively.(8,9.14.15~ 

Because of its position in an equation for the renormalized response 
function, which is, by construction, well behaved in the limit E ~ 0, fl is a 
regular function of E. We can therefore write 

/3 = to + ~tl + ~2t2 + . . .  

Using (1) and (2), we find that the coefficients tm= 0 for m i> 2 and 

d 

The form of Eq. (8) allows the possibility that ~ is zero for some value of Z 
other than the trivial value ;~ = 0. A similar argument applied to z leads to 
the result 

z = ~ h ( d / d , ~ ) b ~  (9) 

An alternative argument, which leads to the same result, is to require that the 
anomalous dimension function be independent of c. We shall find that the 
latter condition on z is the same as specifying that the renormalization 
method be mass independent. 

Since the coefficients of 1/e in the transformations from bare to re- 
normalized parameters are determined uniquely by the (minimal subtraction) 
renormalization procedure, all quantities in the RG equation, and the 
predicted scaling properties, are specified completely. 

The general features of the models are given in the next section. Model A 
is detailed in Section 3, and the renormalization of the perturbation expansion 
and scaling properties are discussed in Sections 4 and 5, respectively. It is 
shown that for this model which is a prototype of the models used by 
Kawasaki (~6~ in his studies of dynamic critical phenomena, the scaling 
exponent is ~/2. The time-dependent Ginzburg-Landau model is chosen as a 
second example, for several reasons. First it is a simple, nontrivial model for 
which the nonlinearity in the Langevin equation is cubic. It also has the 
merit of illustrating the advantage with the 't Hooft RG method that the 
static and dynamic properties do not become entangled, because it is not 
necessary to specify a particular renormalization point. This feature is 
emphasized also by De Dominicis and Peliti. (17~ In Section 9 we describe 
briefly the calculation of the lowest order results for the scaling properties of a 
two-field model of the liquid-gas phase transition. 

2. LANGEVIN  E Q U A T I O N S  A N D  F O K K E R - P L A N C K  O P E R A T O R  

A wide variety of nonequilibrium phenomena can be usefully studied in 
terms of models in which the random variables of  interest are assumed to 
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satisfy a nonlinear Langevin equation. The construction of approximate 
Langevin equations for the study of dynamic critical phenomena is reviewed 
by Kawasaki. (z6~ In some cases, the macroscopic equations for field variables 
can be used to construct an appropriate Langevin equation, e.g., the Navier- 
Stokes model of an incompressible fluid. (4'18~ 

Our definition of a Fourier transform of a random variable ~b is 

~b(r) = ~2-1/2 ~.. ~b k exp(ik.r) (10) 
k 

where ~bk* = ~b_k, and f2 is the system volume. It is convenient to introduce a 
two-component spinor ~b(ok) with elements 

~(~'k) = ~bk and ~b(~ k) = ~bk* (11) 

In order to make the notation compact, we shall introduce the convention 
~b(1) = $(crlkz); the numerical labels will include also any other labels which 
are necessary to specify a particular model, e.g., Cartesian component 
indices. 

The random variables $(1) are assumed to satisfy a nonlinear Langevin 
equation 

~b(1) = F(1) + f(1) (12) 

Here the fluctuating force f represents a Gaussian white noise. 
I f  (...) denotes an average of the enclosed quantity over the equilibrium 

distribution, then 

(f(ql)f(t22)) = 2D(12) 3(q - t2) (13) 

where the matrix 

D(12) = ~12D1(~ 0) (14) 

The Langevin equations (12) are equivalent to the following Fokker-Planck 
equation for the probability density P(~b; t): 

co~p(~b; t) = LP($)P($; t) (15) 

2 ~ ( ~ )  = - [e /O$( i ) ]F( i )  + [e=/a$(i)  a~b(~)]D(i~) (16) 

In (16) we have introduced the convention that barred indices are to be 
summed over; we later extend the convention to include integration over 
time. 

The dynamic properties of the system are studied by calculating the 
correlation functions 

f (d~b) ~b(1) exp[~(tl  - ta)]~b(2)P0(~b) = (~b(1)~b(2)) (17) G(12) 
J 
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where Po(~b) is the stationary probability distribution. The response of the 
system to a weak perturbation is measured by the response function 

R(12) = (4,(1)[-~/05(2)]) for tl >i 0 

= 0  for h < 0 (18) 

The drift vector F in (12) is the sum of two components. ~ A thermal force 
F "~ is generated from Po, 

F"'(1)Po = D(12) ~Po/~$(2) (19) 

o r  

F"'(1) = - D(17.) ~b/0~b(2) (20) 

where the (dimensionless) free energy q) is related by P0 by 

Po "~ exp( -  O) (21) 

The second component F (r~ describes mode interactions, and it is taken to be 
of the form 

F"~(1)Po = Ao[O/O~b(2)]T(12)Po (22) 

Here ~'o characterizes the strength of the interactions, and the matrix T(12)~ 
formed from the Poisson bracket of the dynamical variables, has the property 

T(12) = - ' f (21)  (23) 

From this it follows that the probability current density F(~Po is divergence 
free in ~b space. In consequence, the mode interaction will not change the 
stationary probability distribution Po. With our definitions, F ~ and F ~ are 
also the reversible and irreversible components of the drift vector. 

In closing this section, we note two results which will be useful in 
establishing fluctuation dissipation theorems (FDT). First, from (18) and 
(19) we find 

R(12) = - 0(tl)(~b(1)D- ~(2i)F~"(i)) (24) 

where O(t) is the unit step function. It can be shown that 

~r = [F~~ - F~(1)]e0 (25) 

and consequently it follows from (24) that, for h > 0, 

R(12) = -OtfG(12)D-~(22) - (~b(1)D-~(2])F(~'(2)) (26) 

. MODEL A 

For  this mode l  the drift vector 

F(1)  = -A(1~)4 , (2)  + B(123)4,(2)$(~) (27) 
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where the matrix 

A(12) = ~mAl(10 ~) (28) 

and F ") is linear in the random variables. 
If  A~ and Dk are even functions of the wave vector, the free energy is 

quadratic 

�9 = E (Ak/Dk)~bf'$k* (29) 

and 

Dd& = ( ~ ' k C k * )  = X~ ( 3 0 )  

where the last equality defines the susceptibility Xk. 
The condition that the probability current density is divergence free in 

~b space is satisfied if the coefficients B(123) satisfy 

B(iT2) = 0 (31) 
and 

x ; iB ( - kpq )  + x;1B(-pqk) + x;1B(-qkp) = 0 (32) 

In the last equality we have suppressed the spinor indices for simplicity. The 
only nonzero elements of  B(123) are B( t 1 t 21' 3) and B( ~ 1 ~ 2 ~ 3) and 
these are related to one another by 

B ( ~ l I ' 2 1 ' 3 ) = B * ( ~ , l ~ 2 ~ 3 )  
(33) 

B(~' 1 J' 21  3) = B(~ - 1  ~, -2~ ,  - 3 )  

The relation between the correlation function G and response function 
R(FDT) is readily obtained from (24), namely 

R(12) = O(h - &)G(12)D- I(li)A(i~.) (34) 

Dimensional analysis is an important feature of  the renormalization group 
discussed in Section 5. To facilitate this discussion, we introduce dimension- 
less fields 

= r ~ (35) 

Model A is completely specified by stating the form of the mode coupling B 
in (27), and the wave vector dependence of  A,. If  the variables ~bk describe a 
system with a broken symmetry, then XE 1 ~ k 2 in the limit of  long wave- 
lengths. If, moreover, the variable ~bk is conserved, Dk ,-" k 2. We choose to 
write 

A~ = vok" (36) 



Scaling Properties of Models of Nonequilibrium Phenomena 375 

where v 0 is a bare kinetic coefficient and the exponent e takes the values 2 or 4. 
Finally, the mode coupling B is assumed to take the form 

B( ~ k ~ p ~ q)(xpx~/Xk) ~:~ = (i;~oVo/f2~/2)k~:23~,~ + qT~(p, q) (37) 

where the matrix element T is independent of the magnitude of k in the limit 
of long wavelengths. The form (37) is obtained for a ferromagnet at its critical 
point (a = 4), where 

T~(p, q) = i(q 2 - p2)/kpq (38) 

and also for an incompressible viscous fluid defined, for example, in Refs. 4 
and 18. 

To complete this section, we summarize the dimension of the various 
quantities that have been introduced. Let A be a characteristic unit of wave 
vector. Because s has dimension (1/time), Vo has dimension 1/(tA~ From 
this result it follows that the product hoT has dimension A (~ a)/2, and we find 
that ;~o has dimension A '/2. 

. R E N O R M A L I Z A T I O N  M O D E L  A 

A perturbation expansion for the response function R is summarized in 
the appendix, where it is found that 

R~(t) = O(t)(cpk(t)(--a/~gok*)) 

satisfies 

(39) 

to(k,  s, ~o, no) = [ ,~ ( s ) ] - i  

fO ~ Rk(s) = dt Rk(t)  exp(--st) 

and from (40) we obtain the equation 

F0(k, s, Vo, Ao) = Vo[0o + k ~ + (1/Vo)'2k(s)] (42) 

The reduced frequency variable 00 = S/Uo = io~/Vo has dimension A ~. 
The expansion of ~ ( s )  in terms of the mode coupling B involves only 

even powers of the bare coupling parameter ;~o. Each diagram has two 

(41) 

where 

(8t + Ak)Rk(t) = - di Rk(i)Zk(t -- i) (40) 

The first three proper self-energy diagrams for Z are shown in Fig. 1. It is 
convenient to introduce the inverse of the Laplace transform of R~(t) [Fo 
agrees with the definition of a vertex function (A6) apart from a minus sign] 
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Ca) 

Fig. 1. Diagrams for the contributions to the 
self-energy for model A are shown to order 
~0 4. 

external lines with momenta  k associated with a vertex term kr q). 
From this it follows that we can extract a factor k ~ from each diagram, so 
that it is expedient to introduce a dimensionless function Qk(s) such that 

~(s)  = vok~O_.~(s) (43) 

In order to appreciate the structure of  the diagrams for 0h(s), and to obtain 
results which will be of  use later, we calculate the first-order contribution for 
the case of  a ferromagnet at its critical point, where xk ~ k-2.  Using the 
result (38) for the matrix element T~(p, q), we find that the Laplace transform 
of  Fig. 1 a reduces in the limit of  long wavelengths to 

with 

(2Ao/k)2f dp (k.p)2[p4(0o + 2p4)] -I (44) 

For  0o = 0 the integral is infrared-divergent in dimension d~ = 6. I f  we 
define ~ -- 6 - d > 0, then the singular part  of  (44) is 

~o2/(192zra,0~/*) (45) 

In obtaining this last result, we have used 

J dp -= Kn dO sin a-  2 O dp pn- 1 
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where 

The infinities in the perturbation expansion for Qk(s) are absorbed into a 
dimensionless parameter Z which is defined by the relation 

Ao = ~f2,~/Z (46) 

where A is a dimensionless, renormalized coupling parameter. The procedure 
for calculating Z is to require that the renormalized vertex function 

r(k, O, A) = (Z/vo)ro(k, 0o, Vo, ~o) 

= 0 + k ~ + k ~  - 1 + 0k(0)] (47) 

is finite as E ---> 0 order by order in A. In the second equality in (47), 0 = sZ/vo,  
and 0k(0) is calculated using the expansion of the self-energy described 
above, making the replacements 0o ---> 0, Ao --> / ~'/2A and replacing the bare 
propagator (s + vokO -1 by the renormalized propagator [Z(s  + vkO]-1. 
We shall find in the next section that Z, and consequently 0, vanishes in the 
limit t~ ---> 0. 

The lowest order result for Z for a ferromagnet follows immediately from 
the result (45), on making the replacements just indicated. Because the pole 
is at e, and not some higher power of e, the factor (/x4/0) ' can be replaced by 
unity and we then find 

Z - 1 + A2/(192~r~ 0 = 0 (48) 

Dimensional reasoning shows that Z is a function of A only; for, remembering 
that Z is dimensionless, 

z = z 0 , - ~  = z ( ~ / z )  - z ( ~ )  

This result implies nontrivial properties of the perturbation expansion 
because terms of the form ln(00//z0 that arise from the expansion of (~/0o) " 
must cancel order by order in ~,. 

To see how this comes about, and the intimate connection with mass 
independence of the renormalization group method, we shall write (47) in 
slightly more detail. Let us denote the value of the dimensionally regularized 
Feynman diagrams associated with 2t 2~ by the dimensionless functions fm(O. 
Taking the limit k =~ 0 in (47), 

F = 0 + k ~ + k ' { Z  - 1 + (X2/Z)~/O)'J2f~(e) 

+ (A'/ZS)(iz,/O)ef2(O + ...} (49) 
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Herefz is obtained from Fig. la, andfz(~) is obtained from the sum of Figs. lb 
and lc. Writing 

f l  = t11/, + t12 + ..., f2  = t21/, 2 + t22/, + .", etc. 

and demanding that Z absorbs all poles in F, order by order in 1/, we obtain 
relations between the coefficients t,m and bnm in Eq. (6), e.g., b~ = q l ,  and 
b~2 = b~t~2 + t22. A second set of  relations comes from the vanishing of all 
singular terms in I? proportional to ln(/z~ e.g., t~lbl~ + 2t~.~ = 0. Com- 
bining these two sets of  results, we find b,m = 0 for n > m,  and, to order 2,6, 

b22 I 2 s ~bl~, b2a baa = �89 (50) = = -sbl lblz ,  

These latter relations between the b's are just those required to make the 
anomalous dimension function independent of  ~, as it should be. We also 
observe that these relations serve to determine the coefficients of  the poles 
~-m m /> 2, in terms of the coefficients of  the simple pole. 

5. S C A L I N G  M O D E  A 

It follows from (46) that fl and z, Eqs. (2) and (5), are related by the 
equation 

/3 = A(z - ,/2) (51) 

and it is evident that a nontrivial fixed point exists for z = z* = El2. Using 
the result Z* oc tz '/2, which follows from (51), we see that at the fixed point, 
the right-hand side of  (7) takes the form 

r~- '12A(klz-1 ,  Oolz-~r ('1~)-~ A*) (52) 

In the previous section we found bl "~ ,/2 to lowest order, and in con- 
sequence A* oc el/2; specific results are (7,18) 

A* = [(8~r@/2 incompressible fluid (53) 

k(96~-%) z/~ ferromagnet 

The result A* oc e z~2 permits us to establish the result 

(dfl/da)* = ,  + o ( ,  ~) 

which shows that the nontrivial fixed point is stable for ~ > 0. We can also 
show that if/z = r k  with r < 1, then to lowest order 

A(r )=  A*(, In ! ) -~/2r  -'/~ (54) 

From this result we deduce that A -+ ~ as r --~ 0 for ~ > 0. 
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The asymptotic form of the bare response function follows immediately 
from (4) and (52), and the result Z* = (~/A) ~12. We find that 

Iim Po = VoM(A/k)~t2f[(s/voM)(k/A)~J2] (55) 
k ~ O  

which is independent of/~ as it should be. 
The dimensionless scaling func t ionf i s  derived from A(1, O*/M, A*) and 

its calculation is discussed by Lovesey. (la~ From (55) we deduce that for long 
times 

Q~(t) ,,~ l i t  1-~ (56) 

where the exponent ~ = ~/(2a - 0- 

6. MODEL B 

A Fourier component of the drift vector for this model is 

F~ = - voA~l~ 3i~ - ( 2vo/ f~ )3se B( i ~237~)~-~ ~lr~z~* (57) 

where B(1234) = B(2134) and 

A~ = ro + k ~ (58) 

If  the random variables ~bk have dimension A-1, then Vo and B have dimension 
1/A2t and A E, respectively, with e = 4 - d. The free energy @ is 

�9 = A I ~ *  + B ( i ~ 3 7 ~ ) ~ * ~ *  (59) 

Because the drift vector is purely irreversible, the FDT is 

8tG~( t ) = - yoRe(t) (60) 

In the following calculations, we take B to have the simple form 

B(1234) = 31 go3~+a,a+~ (61) 

where go is a parameter of dimension M. For this choice of B, model B is the 
same as the time-dependent Ginzburg-Landau model36'8~ 

7. R E N O R M A L I Z A T I O N  M O D E L  B 

A perturbation theory for the calculation of the response function Rk(t) 
in terms of go is given in Appendix B. From the results given there, the 
inverse of the Laplace transform of Re(t), Po, is given by (0o = S/Vo) 

k 2 + �89 @ G~(O) 0o~(0o) to(k, Oo, to, go) = Oo + ro + | + Z~(O) 
o j  

(62) 
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( b )  

Fig. 2. Diagram (a) represents the lowest order 
contribution to the self-energy for model B. 
One of the three identical terms of order go 2 in 
the vertex function r4 is represented by part 
(b). 

Here Z~(s) is the Laplace transform of the self-energy Z~(t), and the Hartree- 
Fock term is determined by the self-consistent equation 

1/Gk(O) = ro + k 2 + �89 f dp G~(O) - Zk(O ) (63) 

The lowest order graph for the self-energy is of  order g02, and it is shown in 
Fig. 2. 

The perturbation theory for Nk(0) is identical to that for the r model, 
which has been discussed extensively in the literature. (19~ It is, in fact, usual 
to use a loop expansion for Y~(0). The reader who is interested in a com- 
parison between the diagrammatic expansion used here and the loop expan- 
sion can find the diagrams for the latter in a review article bY Brezin et al., (2~ 
for example, which also contains a detailed discussion of the renormalization 
of the perturbation expansion. 

We shall effect the renormalization by introducing renormalized (di- 
mensionless) parameters g, r, and 0 through the transformations 

go = + Z (64) 

ro =/z2r{1 + ~ b~(g)/e ~} (65) 
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and 

0o = ~,~0{1 + ~ d~(g)/~ ~} (66) 

It is also necessary to renormalize the random fields, ~b --~ Z~/2~b, and we write 

Z8 = 1 + ~, e,(g)/e" (67) 

In these last four equations, n is a positive integer and the coefficients b, ,  e , ,  
and d, are to be determined by requiring that ZzFo is finite as E --> 0 order by 
order in g. The coefficients a,  are determined by the renormalization of  the 
four-point vertex function. We described briefly the calculation of  the 
coefficients to order g2. In carrying out the calculations, we shall take 
advantage of the fact that we can multiply the dimensionally regularized 
integrals by an arbitrary regular function of e which reduces to unity for 
e = 0, without affecting the values of  the coefficients in (64)-(67). The choice 

f f: f; dp = [Kdr(3 - �89 dO sin a-2 0 dpp ~-1 (68) 

will avoid the appearance of  Euler's constant at intermediate stages of  the 
renormalization procedure. 

In order to calculate the contribution from the Hartree-Fock term in 
(62) to order g2, we shall need G;I(0)  to order g. From (63) we find 

k 2 + r/z2(1 + b~g/,) + �89 dp (p2 + rlz2)-i (69) 1/G~(0) 

and we will later find bll = 1/16~r 2. Using (68), we find 

f dp (p2 + rl~2)-~ = _rtzZ2bzt/r + regular terms (70) 

The lowest order self-energy contribution depicted in Fig. 2 translates into 
the integral 

~,g)2fdpfdqtOlz2(Olz2 + p 2  + ip + q _  k]2 + q2)-1 _ 1] 

x Gp(O)Ga(O)Gp § (71) 

where G,(O) is obtained from (69) setting g = 0. After some tedious algebra, 
the singular parts of  (71) are found to be 

l~20(g2/8~) ln(4/3) + tz2r(gb~/e)2r -~ + (g~b~ikZ/12~) + ~rg2b~l]2~) 
(72) 

Finally, we must consider the four-point vertex function. There are three 
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diagrams of order g2 (Fig. 2), and they have an identical pole structure, 
namely 

�89 f dp [(p2 +/~2r)([ p + k12 + t~2r)]-i 

= --g2bl l /E + regular terms (73) 

From this result we find that 

a12 = 3bll (74) 

In order to find the coefficients b., c.,  and d. we construct ZsI'0 using the 
results listed above. Note that the total Hartree-Fock contribution is 

tz2r[-(gb11]~)(1 + gr-~/2a12/E) - (gbll /e)2r -~12 + (gbll /e)2r - ~] (75) 

where the last two terms, of order g2, arise from the third and fourth terms of 
the right-hand side of (69). In obtaining (73b) we have used the result 

f dp = 2 b ~ / e  + regular (76) (p~ + /~2r)-2 terms 

Notice also that in the results we have kept factors r-~/2 and r-~ when they 
multiply a pole of order e z, because these factors will, when expanded in e, 
give poles of order E. However, the coefficients of these terms contain In r 
and must therefore cancel among themselves; it may be quickly verified that 
this does in fact occur. The final results for the coefficients are, in addition to 
(74), 

b~l = 1/16~r 2, ba2 = -5b~1/12, b2~. = 2b~1 
(77) 

c~2 = - b ~ / 1 2 ,  d~2 = -(1/8)ln(4/3) + b ~ / 1 2  

8, A N O M A L O U S  SCALING M O D E L  B 

The RG equation is constructed in the manner described in Section 5. 
Let 

to(k, 0o, ro, go) = (~2/Z3)A(k//~,  O, r, g )  (78) 

where A is a dimensionless function which depends only on renormalized 
parameters and the wave vector, and 

fl = / ~  dg/dt~, Zo = - / ~  d In O/dt~ (79) 

z, = -/~ d In r/d/~, z = I~ d In Za/d/~ (80) 
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These four functions can be expressed in terms of the coefficients a l ,  bl ,  c~, 
and dl by using the method described in Section 1. The results are 

fl = g[g (d /dg) (a~ /g )  - e] (81) 

Zo = 2 -- g dd~/dg (82) 

z,  = 2 - g db~/dg (83) 

z = - g  dcl /dg (84) 

The result (74) together with (81) shows that a stable fixed point exists for 
which 

g* = ,/361~ = 16~2q3 (85) 

and 

(d[3/dg)* = E (86) 

to lowest order in ~. The corresponding values of  the anomalous dimension 
functions are (6-8~ 

zo* = 2 - V + (g*/2) 2 ln(4/3) -~ 2 - ~/ + Vo (87) 

z,* = 2 - ,7 - E/3 (88) 

where 

z* = ~2/54 = V (89) 

The asymptotic form of  Po follows immediately from the R G  equation and 
the existence of  a nontrivial fixed point. With the scaling function denoted by 
f [  ], we have 

lim F0 = k2(A /k ) ' f [ ( s / voA2) (A /k )  ~o', r ( A / k )  ~;] (90) 
k~O,s--*O 

I f  r is soft, and vanishes as a critical temperature is approached as ( T  - To)L 
then we can establish f rom (90) that 

7 =  1 + r  (91) 

which is the standard result. Similarly, at the critical point and with s = ko, 
we find f rom (90) the result 

lira lira ro ~ (ico)v (92) 
k ~ O  o- -}0  

where 

and 7/0 is defined in Eq. (87). 

(93) 
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9. A TWO-FIELD M O D E L  

To round off our discussion of the use of the 't Hooft RG method to 
establish scaling properties, we examine briefly a simple, two-field model 
which possesses some of the features of models A and B. 

Several authors ~16,21~ have successfully interpreted critical phenomena 
associated with the liquid-gas phase transition in terms of a model which 
retains only the coupling between the fluctuations in the number density 
(order parameter) and the transverse local velocity. The static properties of 
the model are described by a stationary distribution function with a free 
energy of the form (59) for the order parameter ~b~, with the addition of  a 
term quadratic in the (dimensionless) velocity field %~. 

The mode-coupling term in the Langevin equation for ~bk is 

-iA0f~ -lj2 ~ ~%~r ~ -- p~) (94) 
pr162 

where the coupling parameter 2o is proportional to the square root of the 
ratio of the temperature and mass density, and it has dimension 1 / t A  ~ +a~2. 

The mode-coupling term in the Langevin equation for Ck ~ involves only the 
order parameter, 

- (iho/2f2 ~/2) ~ r ~ -- X~-2,)[p" -- k~(k.p)/k z] (95) 
D 

We shall denote the bare kinetic coefficients associated with Ck and Ck" by vo 
and Vo', respectively. 

A perturbation expansion for the ~b and r response functions in terms of 
go and A 0 can be developed using the scheme described in the appendix, and 
it is found that the critical dimensionality dc = 4. Renormalization of the 
perturbation expansion is affected as described in Section 7 with the addition 
of dimensionless renormalization parameters Z and Z '  to absorb poles in the 
dimensionally regularized Feynman integrals generated by the mode-coupling 
terms (94) and (95). 

Consider, for example, the r response function, which is of the form 

(3~ B - k~kZ /k~ )R~ ' ( t )  (96) 

with Rk'(0) = 1. The lowest order result for the inverse of the Laplace 
transform of R~'(t) is 

Fo'(k, s, 10, go) = s + uo'k 2 + [;~o2/2(d- 1)1 dpx~,Xk_pOik_ p -- X ;X)  2 

x [p2 _ ( k . p ) / k 2 l [ s  + Vo(p2/x ,  + lk _ pl2/x~_,)]-~ 

(97) 
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When we take X~ "~ k-2+" this reduces in the limit of  long wavelengths to 

Fo'(k, s, ?to, go) = s + vo'k 2 + (?to2b~/12~Vo)/Z ' - '  

+ regular terms (98) 

where b~a = 1/16zr 2. Bearing in mind that Z3 ~ tz ' and the result (98), we 
introduce a dimensionless coupling constant ?t in analogy with (46): 

?to = ?t(I-L'VoVo'/Z3ZZ') ~'2 (99) 

and we require that 

ZTo'(k ,  s, ?to, go) 

is finite as ~ ~ 0 order by order in ?t. Dimensional reasoning shows that Z 
and Z'  are functions of ?t and g only. From (98) we find immediately that the 
lowest order result for Z '  is 

Z ' =  1 - ?t2b11/12~ (100) 

The renormalization of  the perturbation expansion for the ~b response 
function is more complicated because of  the additional terms generated by 
the cubic term in the free energy. We also find terms of  order go?to 2, but on 
inspection the total contribution to ro of  terms of  this order is found to be 
zero. To order go 2, ?to 2 we obtain, with 0o = S/Vo, 

Po(k, s, ?to, go) 

= S + vok2(ro + k2 + �89 f dp Gp(O)'+ lgo2 f dp f dq 

• (0o[0o + p2 + ]p + q _ kl u + qU]-i _ 1)Gv(O)Gq(O)Gv+q_k(O)~ 
. g  

+ (?toZ/Xu)f dp Xu_,[/c 2 - (k.p)2/pZ](s + Vo'p 2 + Yolk'- pl2/xk-~) -1 
t /  

(101) 

and require that Z3ZFo(k, s, ~o, go) is finite as E -+ 0 order by order in ?t and 
g. Using the results of  Section 7 and Eq. (99), we obtain the same results for 
the static properties of the ordering parameter, i.e., 2'3 ~ /~ '  with ~/ = E2/54, 
and, to lowest order, 

Z = 1 - 37t2b~/2~ (102) 

The R G equations for the renormalized vertex functions can be written down 
by analogy with the results given in Sections 1, 5, and 8. From (99) we readily 
obtain the Gel l -Mann-Low function 

[33 = Iz d?t/dt* = �89 + z' + ~ / -  ~) (103) 
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where the anomalous dimension functions are given by 

z = i~dlnZ/dl~,  z' = t~dlnZ' /dl~ (104) 

Writing Z and Z '  in the form of  (6), we obtain results akin to (9), namely 

z = �89 da~/dA, z' = �89 da~'/dA (105) 

Using the results (100) and (102) together with (103) and (105), we find that 
there is a (stable) nontrivial fixed point at which 

A* = (12,/19b~) ~'2 (106) 

and(2~) 

z* - 18e/19, (z')* = e/19 (107) 

Finally, the asymptotic forms of  17o and Po' are 

lim 17o . ~ [A~ '+n~[  s [ k ~ * + ,  s (k)~'*] = ( l O 8 )  

and 

tim F o ' =  v0/c ~) : [v--~ s 
vole 2 k-~O,s/k4~O 

(109) 

A P P E N D I X .  P E R T U R B A T I O N  E X P A N S I O N  

The perturbation scheme used here was developed for quantum field 
theory and applied subsequently to quantum statistical mechanics (22) and 
classical statistical dynamics. (23,24) If we define a spinor ~ with components 

q:( t 1) = $(1), ~F( ~ 1)  = - a/a~,(1), ( 'F( ~ 1)...) = 0 (A1) 

then it satisfies equal-time commutators 

[tF(r ~F(~'I')] = **~,8(11') (A2) 

where the four elements of the matrix r are z t  t = ~** = 0, , t  ~ = 1, 
~-, r = - 1. Notice that we could equally well form the spinor in terms of  
Bose operators a and u+ with 4J = a + cz + and a/8~ = (a - cz+)/2. 

The correlation functions of  interest are obtained by studying the 
correlations of the spinors tF. To this end we introduce a generating function 

S(V) = ((exp{v(i)'F(i)})+) (A3) 

and cumulants 

-~l  --. ~7~" = 8~ In S (~ ) /8 , / (1 )  ... By(n) ( A 4 )  
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In (A3), (.-.)+ and (...) denote, respectively, time ordering and thermal 
average of the enclosed operators. The correlation and response functions G 
and R, introduced in the main text, are obtained from the second-order 
cumulant when the auxiliary field V is set equal to zero. It is convenient to 
introduce also the renormalized vertices 

P,(1 ..-n) = ~P,_1(1 . . .  n - 1 ) / 8 - ~ n ~ -  (A5) 

where 

-~12~-P~(~3) = - 8 0  3) (A6)  

from which it follows that, for example, 

.~123~- = .~1i}--(22~--~33~-F3(i23) (A7) 

The spinor ud satisfies an equation of  motion 

1 ~,(123)'r(2)v'(3)  -ctt~-(12)V(2) = y(12)~(2) + N 

(0) 
1 ~,(l~3rl),r(2),i,0),f(z~ ) + A(tl) + y ,  

(A8) 

where y-matrices can be made symmetric in all arguments. For model A the 
only nonzero elements are 

y( ~ 1 t 2) - - -  - 3 ( t 2  - h ) 8 1 2 A 1  (A9) 

and 

~,( ~ 1 I' 2 '~ 3) = 3(t~, - h)3(ta - h)2B(123) (A10) 

and for model B we have, in place of  (A10), 

~( + 1 J' 2 t' 3 1' 4) = - 3(t2 - tl)8(ta - h)3(t4 - t~)B(1234) (A11) 

The second-order cumulant satisfies a Dyson equation 

[ -  at?-(12) - ~,(12)1..~21'}- 

= 3(11') + [2D'(12) + �89 + Z(~'(12) + X'b'(12)]-~]l'}- (A12) 

in which the matrix D' is 

2D'(12) = (00 2D0(12)) 

The self-energies have the form 

Y '=  I ;~t  Z ~ ,  

(A13) 

(A14) 
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and they are expressed in terms of the three- and four point vertex functions. 
The self-energy Z <~ is 

with 

(A15) 

P~023) = y(123) + [3Z(12)/3.~7~](3.~7~/3-~3~-) 

= y(123) + (y(l:~2)-K~3~-r3(3~2) 

x . ~ . F o ( g w  ) (A16) 

From this last equation, we obtain the expansion of F3 to third order in r,  
namely 

r3(123) = 7(123) + 7(lZ~])-~.3~-y(332) 

• .<7~37~.~,(~73) + O(y 5) (A17) 

For Z <b~ we have 

Z(b>(12) = ~e(13z~3).~3~}..~:~7~..~3g~-r~(~792) (A18)  

and, to order 7, 2, 

p,(1234) = y(1234) + b/(1236).~58~-.~69~-y(g934) 

+ y(1356).~58}..~w167 (A19) 

The approximate results (A17) and (A19) are adequate for the discussions 
given in the main text. 

Equations for G and R are obtained from the Dyson equation for the 
second-order cumulant and, denoting the matrix adjoint of R by R, we find 

[0, + ~ s &  + �89 

= di{Z+ , ( t  - i)G(i)}~, + di(Z+ +(t - i ) /~(-i)}~,  (A20) 
oo oo 

and for t > 0 

Notice that the diffusion matrix D does not appear in these equations since 
the fluctuating force in (12) is uncorretated with the random variables. 

The FDT for model A, Eq. (34), implies a relationship between the 
components of the self-energy which is found to be <~) 

Z+ ~(t)G(O) = - ~ +  ,( t)  for t > 0 (A22) 
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The self-energy Z + + (t) is denoted by Z~(t) in Section 4, and the first few terms 
in the diagrammatic expansion of  Zk in terms of  bare propagators are shown 
in Fig. 1. For  example, the first two diagrams in Fig. 1 arise from the expan- 
sion of  the following equation in terms of  bare propagators;  f rom (A10), 
(A15), and (A17) we have, to order 7 2, 

= 2B(l~3)B(l'743)(~b(t~)~b(tl'7~))(4,(q3)~b(tl'~)) 

The F D T  for model B, Eq. (60), implies that ~5) 

and 

OtG~l~ = o = - Dk (A23) 

~,~ + ~ (t)  = - D Z  ~ t ( t )  (A24)  

These two relations, when inserted into (A20), lead to the self-consistent 
equation (63) for G~(0). The self-energy Z ~ ~ is denoted by Z~ in the main 
text. The first terms in the diagrammatic expansion of  Z~ and F~, derived 
f rom (A18) and (A19), are shown in Fig. 2. 
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